二叉树

知识点

二叉树遍历

前序遍历先访问根节点,再前序遍历左子树,再前序遍历右子树 中序遍历:先中序遍历左子树,再访问根节点,再中序遍历右子树 后序遍历:先后序遍历左子树,再后序遍历右子树,再访问根节点

注意点

  • 以根访问顺序决定是什么遍历

  • 左子树都是优先右子树

public class TreeNode {
    public var val: Int
    public var left: TreeNode?
    public var right: TreeNode?
    public init(_ val: Int) {
        self.val = val
        self.left = nil
        self.right = nil
    }
}

前序递归

前序非递归

中序非递归

后序非递归

注意点

  • 核心就是:根节点必须在右节点弹出之后,再弹出

DFS 深度搜索-从上到下

DFS 深度搜索-从下向上(分治法)

注意点:

DFS 深度搜索(从上到下) 和分治法区别:前者一般将最终结果通过指针参数传入,后者一般递归返回结果最后合并

BFS 层次遍历

分治法应用

先分别处理局部,再合并结果

适用场景

  • 快速排序

  • 归并排序

  • 二叉树相关问题

分治法模板

  • 递归返回条件

  • 分段处理

  • 合并结果

典型示例

归并排序

注意点

递归需要返回结果用于合并

快速排序

注意点:

快排方法一由于是原地交换所以没有合并过程 传入的索引是存在的索引(如:0、count-1 等),越界可能导致崩溃

常见题目示例

maximum-depth-of-binary-tree

maximum-depth-of-binary-tree

给定一个二叉树,找出其最大深度。

思路:分治法

balanced-binary-tree

balanced-binary-tree

给定一个二叉树,判断它是否是高度平衡的二叉树。

思路:分治法,左边平衡 && 右边平衡 && 左右两边高度 <= 1,

binary-tree-maximum-path-sum

binary-tree-maximum-path-sum

给定一个非空二叉树,返回其最大路径和。

思路:分治法,dfs递归求某节点的最大贡献值,同时计算最大路径

lowest-common-ancestor-of-a-binary-tree

lowest-common-ancestor-of-a-binary-tree

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

思路:分治法,有左子树的公共祖先或者有右子树的公共祖先,就返回子树的祖先,否则返回根节点

BFS 层次应用

binary-tree-level-order-traversal

binary-tree-level-order-traversal

给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)

思路:用一个队列记录一层的元素,然后扫描这一层元素添加下一层元素到队列(一个数进去出来一次,所以复杂度 O(logN))

binary-tree-level-order-traversal-ii

binary-tree-level-order-traversal-ii

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

思路:在层级遍历的基础上,翻转一下结果即可

binary-tree-zigzag-level-order-traversal

binary-tree-zigzag-level-order-traversal

给定一个二叉树,返回其节点值的锯齿形层次遍历。Z 字形遍历

二叉搜索树应用

validate-binary-search-tree

validate-binary-search-tree

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

思路 1:中序遍历,检查结果列表是否已经有序

思路 2:分治法,判断左 MAX < 根 < 右 MIN

insert-into-a-binary-search-tree

insert-into-a-binary-search-tree

给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。

思路:找到最后一个叶子节点满足插入条件即可

总结

  • 掌握二叉树递归与非递归遍历

  • 理解 DFS 前序遍历与分治法

  • 理解 BFS 层次遍历

练习

最后更新于

这有帮助吗?